
Any questions?
Reach out

svcamp@engr.uvic.ca

Grade
7-9

Arduinos

Arduino Metronome

Experienced C++ coding for Arduino. Practice using while and if/else loops in
the Arduino web editor. Learn about Servo and DC motors, and how we can

add motion to our Arduino circuit. Code a metronome project and set the
beats per minute (BPM) to flash an LED in time with the metronome. Add

motor movement to your metronome and customize Arduino
microcontroller, breadboard wiring, and C++ code.

What is a Arduino?

Arduino is an open-source electronics platform based on easy-to-use
hardware and software. Arduino boards are able to read inputs - light on a
sensor, a finger on a button, or a Twitter message - and turn it into an output -
activating a motor, turning on an LED, publishing something online. You can tell
your board what to do by sending a set of instructions to the microcontroller on
the board. To do so you use the Arduino programming language (based on
Wiring), and the Arduino Software (IDE), based on Processing

Arduino coding environment: https://create.arduino.cc/editor/

Materials

● Arduino Uno Kit
○ USB Cable
○ 5 LEDs
○ Breadboard

● Computer with Arduino
Create

● Tape, glue or sticky putty

https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Reference/HomePage
http://wiring.org.co/
https://www.arduino.cc/en/Main/Software
https://processing.org/
https://create.arduino.cc/editor/

Arduino Metronome

Information on Metronomes

A metronome has a mechanical arm that swings back and forth. One “beat” is the time it
takes for the metronome to swing from the middle, to one side, back to the middle again.

Musical timing is expressed in beats per minute (bpm). So, we want to be able to give the
metronome a speed in units of bpm, and then have the program calculate how quickly to
“swing” back and forth. Rather than using a mechanical arm, in this program we will light
LEDs in a pattern that moves back and forth.

Metronome Coding
Adapted from https://www.instructables.com/id/DIY-Metronome/
Changed to blink an array of LEDs instead of buzzing the piezo.

Wiring Diagram:

https://www.instructables.com/id/DIY-Metronome/

Arduino Metronome
Metronome.ino - LED
/* for Science Venture, June 2020
*/

// declare the constants for the five LEDS
const int LED1 = 3;
const int LED2 = 4;
const int LED3 = 5;
const int LED4 = 6;
const int LED5 = 7;

// calculating the speed required
float ledpb = 4; // LEDs per beat. led3 is the "on beat" so, 3, 4, 5, 4 would be one beat, (or 3, 2, 1, 2).
float bpm = 60; // number of beats in one minute
float ledpm = (ledpb*bpm); // LEDs per minute
float ledpms = ledpm/(60.*1000.); // LEDs per millisecond
float mspled = 1/ledpms; // reciprocal of frequency is period (1/f=T)

int ledArray[8] = {LED1, LED2, LED3, LED4, LED5, LED4, LED3, LED2};
int led_index;

void setup() {
 Serial.begin(9600); // initialize Serial connection
 led_index = 0;

 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 pinMode(LED3, OUTPUT);
 pinMode(LED4, OUTPUT);
 pinMode(LED5, OUTPUT);
}

void loop() {

 // Blink the LED when MIN angle is reached
 digitalWrite(ledArray[led_index],HIGH);
 delay(mspled);
 digitalWrite(ledArray[led_index],LOW);

 led_index++;
 if (led_index >= 8) {
 led_index = 0;
 }
}

Arduino Metronome
Extension

Make a timer activated by a button press. Use LEDs and the Serial monitor to show when
time has run up, and optionally add Servo or DC motor code to show motion as the timer
counts down. Use the same breadboard configuration from the Fibonacci program, and
adapt the same button code to initiate the timer countdown.

Diagram for wiring the button switch on the breadboard - the button part is similar to the
Fibonacci Project, but now we have five coloured LEDs as well.

Arduino Metronome
timerCountdownButton.ino - using LEDs
/*
 for Science Venture, June 2020
 Starts a 10 second time when the button is pressed. (then resets after two seconds)
*/

// declare the constants for the five LEDS
const int LED1 = 3;
const int LED2 = 4;
const int LED3 = 5;
const int LED4 = 6;
const int LED5 = 7;

// declare button variables
const int button = 8; // button Pin
int buttonState; // will hold the current state of button

int timer_length = 10; // timer length (integer in seconds)
float timer_length_ms = timer_length*1000.; // timer length in milliseconds
float increment = timer_length_ms/5;

int ledArray[5] = {LED5, LED4, LED3, LED2, LED1};
int led_index = 0;

void setup() {
Serial.begin (9600);
pinMode(button,INPUT); // set button as input

 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 pinMode(LED3, OUTPUT);
 pinMode(LED4, OUTPUT);
 pinMode(LED5, OUTPUT);

delay(2000); // give the serial connection time to start
Serial.println("Welcome to the timer program");

}

Arduino Metronome
void loop() {

// read button state
buttonState = digitalRead(button);

// start timer if button is pressed:
if(buttonState == HIGH) {

 Serial.print("Starting timer for: ");
 Serial.print(timer_length, DEC);
 Serial.println(" seconds.");

 for (led_index = 0; led_index <= 4; led_index++){

 digitalWrite(ledArray[led_index],HIGH);
 delay(increment);
 digitalWrite(ledArray[led_index],LOW);

 }

 Serial.println("Time's up!");
 led_index = 0; // reset the LED timer position
 delay(2000);
}

}

Have a question?

Reach us at
svcamp@engr.uvic.ca

Want to share your
project or results with us?

Email or tag us
@ScienceVenture

#SVatHome

