
Any questions?
Reach out

svcamp@engr.uvic.ca

Grade
7-9

Arduinos

Arduino Reaction
Time

Introduce the photoresistor! Read the values of light shining on your Arduino
circuit to start a reaction time game. Light an LED for a random amount of

time and use button inputs to test your reflexes. Practice wiring the
breadboard with multiple circuit components. Create a program to gain

points based on your reaction speed, and try to beat your highscore.

What is a Arduino?

Arduino is an open-source electronics platform based on easy-to-use
hardware and software. Arduino boards are able to read inputs - light on a
sensor, a finger on a button, or a Twitter message - and turn it into an output -
activating a motor, turning on an LED, publishing something online. You can tell
your board what to do by sending a set of instructions to the microcontroller on
the board. To do so you use the Arduino programming language (based on
Wiring), and the Arduino Software (IDE), based on Processing

Arduino coding environment: https://create.arduino.cc/editor/

Materials

● Arduino Uno Kit
○ USB Cable
○ Breadboard
○ LED
○ Button switch
○ Photoresistor

● Computer with Arduino
Create

https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Reference/HomePage
http://wiring.org.co/
https://www.arduino.cc/en/Main/Software
https://processing.org/
https://create.arduino.cc/editor/

Arduino Reaction
Time

Photoresistors - Analog vs. Digital

Photoresistors, also known as LDR (light-dependant resistor), are composed
of photo-conductor material which reacts to light. In the absence of light their
resistance is very high, when they are exposed to light their resistance is very
low. Resistors are used to reduce current flow

The word Photoresistor can be broken down into a combination of two words:

Photo or Photon - which means light particles
Resistor - which is used to reduce current

Therefore, the flow of electric current will increase when it is exposed to light
and decrease when in the dark.

Because the photoresistor takes a range of values based on light exposure, the
readings will be more than just HIGH or LOW. To read these values, we need
to use an analog pin instead of a digital pin. Analog pins can intake an electric
signal and check the level of voltage received from 0 to 1023 (2^10). This is
because of the Arduino’s 10 bit Analog to Digital converter (ADC). Digital pins
can only interpret a signal as one of two values: HIGH or LOW (0,1)

Arduino Reaction
Time

Wiring the Circuit

There will be 2 portions of the circuit for this reaction game; one for the button switch and
one for the photoresistor. We can use 1 breadboard and put each portion on it’s own
section of the breadboard. They can share the same power and ground strips on the edge
of the breadboard.

Wiring the Button switch (same as the Fibonacci circuit from Day 2)

Attach the button across the middle divide of the breadboard. The bottom left corner
takes power, the bottom right has a resistor to ground. The top right corner goes to the
button pin.

Wiring the Photoresistor

Connect power to one end of the photoresistor. On the other end, we have the lightPin
connection and a resistor to ground.

We use an analog pin to read the photoresistor. Connect it to any analog pin, found in the
bottom corner of the Arduino pictured here with the yellow connection.

Full Circuit Diagram

Reaction Game Coding - Step-by-Step

Initializing Variables
1) Start the code by declaring the variables for the program. Declare constant LED and

button pins for use in our program. Declare a buttonState to read our button press.
2) Declare a constant pin for our photoresistor. This must be an analog pin. There are 6

total analog pins (A0 - A5) located on the opposite side of the 13 digital pins.
3) Declare photoresistor variables for Calibration (firstLight), current readings

(currentLight) and a threshold value to tell when the photoresistor has gone dark /
been covered.

const int LED = 13;
const int button = 4;
int buttonState; // holds the current state of button

const int lightPin = 0; // use an Analog pin for the photoresistor

// photoresistor variables
int firstLight; // first reading from photoresistor, used to calibrate
int currentLight; // current reading, check to compare with firstLight
int threshold = 50; // trigger the game once threshold is breached
// adjust the threshold appropriately to photoresistor readings
// if readings are low/unusual, try a different resistor on the photoresistor ground

Arduino Reaction
Time

Arduino Reaction
Time1)

2)
3)
4)

5) Declare a randomTime variable for an unpredictable delay. Set a min and max Time,
and the random delay will be between these values. A larger range will be more
random.

//random delay variables
int randomTime;
int minTime = 2000; //minimum random delay (2 seconds)
int maxTime = 5000; //maximum random delay (5 seconds)

6) Lastly, declare our score variables. We need a score value when we start and end
the game. The difference between these values will give us our points Score in
milliseconds, so the lowest score will be the fastest reaction time.

7) We use unsigned long to store the largest number possible (32bits) as we are
managing our score by the milliseconds and it can get quite large.

//Score variables - use unsigned long for large numbers of milliseconds
unsigned long startScore; //start time when LED turns off
unsigned long endScore; //end time when button is pressed

unsigned long score; //score = endScore - startScore

Void setup() { }
1) Begin the Serial communication. Here we will read our Light values and score.
2) Use analogRead(lightPin); to take the firstLight reading. Keep the photoresistor in a

constant lighting environment so we can have a good initial value. Analog pins are
used for photoresistors to read values beyond 0 and 1. Print the first value to the
serial.

void setup() {
 Serial.begin (9600); //serial monitor begins

//read the inital light value. Keep the photoresistor uncovered
 firstLight = analogRead(lightPin);
 Serial.println(firstLight);

Arduino Reaction
Time1)

2)

3) Set the pin modes. We require an input to read the button press, and output for
LED.

4) Randomize the randomTime delay variable by using random(minTime, maxTime);
This randomizes the value anywhere between min and max.

5) Delay to finish setup. By now you have code to see your first light reading, so it is a
good idea to test and see if your value is in a good range (50-300). If the value is too
low or unusual, try using a different resistor when grounding the photoresistor.

 pinMode(button, INPUT); //set button input
 pinMode(LED, OUTPUT); //set LED output

//randomize the delay time between min and max
 randomTime = random(minTime, maxTime);
 delay(2000); // give the serial connection time to start
}

Void loop() { }

1) Start by reading the current light value and printing to serial. This will let us check
the values before we cover the photoresistor to start the game.

void loop() {
 //read current light values and print to Serial
 currentLight = analogRead(lightPin);
 Serial.println(currentLight);

2) if the currentLight value reads below the threshold difference from the initial value
set in setup, then the game will begin. Here may be a good idea to change the
threshold based on what readings you are getting. In heavily lit environments,
threshold may be around 100 but in dim lighting it may be 25. Find what works for
your space.

3) Once game has started, write LED to HIGH. This shows us the game has begun.
4) Delay by randomTime. We don’t know when the reaction time will start.
5) Read the button - this checks if we are already pressing the button before the time

starts
6) Use millis(); to read our start time into startScore. This function reads the

milliseconds since the program has started.

Arduino Reaction
Time

1)
2)

1)
2)
3)
4)
5)
6)

7) Using an if statement, check if the button has been pressed before the LED is LOW.
We want to stop players from holding the button until the game starts. Include a
message to indicate we had a false start. Delay and set startScore = 0;. Close the if
statement.

8) Turn off the LED. This is our signal that the game has started.

 // Turn on LED when we cover the photoresistor
 if (currentLight < firstLight - threshold) {

 digitalWrite(LED, HIGH);

// wait a random amount of time before LED turns off and game starts
 delay(randomTime);

 buttonState = digitalRead(button); // read the button state
 startScore = millis(); // read the starting time

// Check if button is pressed before the game has started
 if (buttonState == HIGH) {
 Serial.println("Wait until the LED is off to press the button!");
 delay(1000);
 Serial.println("No points for you!");
 startScore = 0; // reset initial points
 }
 digitalWrite(LED, LOW); //LED off, game has begun

Arduino Reaction
Time1) S

2) S
3) S
4) S
5) S
6) S
7) S
8) S

9) Now the game has started. Use a while loop to keep our program in the game while
we wait for the button to be pressed. Read the button pin so we know once it is
pressed.

10) If buttonState changes, set the endScore millis(); and perform the score calculation.
Subtracting startScore from the endScore will give us the milliseconds between
when the LED turned off and when we pushed the button. This is our score.

// My button goes HIGH when pressed. If your button is not working,
// try swapping the LOW and HIGH from the while and if loop arguments
 while (buttonState == LOW) { // while button NOT pressed
 buttonState = digitalRead(button); // read the button state
 if (buttonState == HIGH) { // when button pressed
 endScore = millis(); // read end time

11) Print the score and delay a few seconds so we have time to read the serial monitor.

// subtract start time from end to find the difference. This is your score.
 score = endScore - startScore;
 Serial.print("Your score is: ");
 Serial.println(score); //prints score
 delay(2000);
 } // close button if statement
 } // close button while loop
 } // close photoresistor if statement

// reset random delay to a new random value
 randomTime = random(minTime, maxTime);
 delay(1000);
} // close void loop

12) Close the button if statement, while loop, and photoresistor if statement. Reassign
the randomTime variable to a new random delay before closing the void loop.

13) This finishes our program. Test your reaction time and try to get the lowest score.

Arduino Reaction
Time

reactionGame.ino - Complete Code

/*
Cover the Photoresistor to start the game and turn on the LED.
The LED will stay on for a random amount of time.
Press the button once the LED has turned off to test your reaction time.
Read your score in the serial monitor, this is your reaction time in milliseconds!
*/

// declare the Pin constants for the button, LED and photoresistor pins
const int button = 4;
const int LED = 13;
const int lightPin = 0; // use an Analog pin for the photoresistor

//photoresistor variables
int firstLight; // first reading from photoresistor, used to calibrate
int currentLight; // current reading, check to compare with firstLight

int threshold = 50; // trigger the game once threshold is breached
//adjust the threshold appropriately to photoresistor readings
//if readings are low/unusual, try a different resistor on the photoresistor ground

//random delay variables
int randomTime;
int minTime = 2000; //minimum random delay (2 seconds)
int maxTime = 5000; //maximum random delay (5 seconds)

//Score variables - use unsigned long for large numbers of milliseconds
unsigned long startScore; //start time when LED turns off
unsigned long endScore; //end time when button is pressed

unsigned long score; //score = endScore - startScore

int buttonState; // holds the current state of button

Arduino Reaction
Time

 void setup() {
 Serial.begin (9600); //serial monitor begins

//read the inital light value. Keep the photoresistor uncovered
 firstLight = analogRead(lightPin);
 Serial.println(firstLight);

 pinMode(button, INPUT); //set button input
 pinMode(LED, OUTPUT); //set LED output

//randomize the delay time between min and max
 randomTime = random(minTime, maxTime);
 delay(2000); // give the serial connection time to start
}

void loop() {
 //read current light values and print to Serial
 currentLight = analogRead(lightPin);
 Serial.println(currentLight);

 // Turn on LED when we cover the photoresistor
 if (currentLight < firstLight - threshold) {

 digitalWrite(LED, HIGH);

// wait a random amount of time before LED turns off and game starts
 delay(randomTime);

 buttonState = digitalRead(button); // read the button state
 startScore = millis(); // read the starting time

Arduino Reaction
Time

// Check if button is pressed before the game has started
 if (buttonState == HIGH) {
 Serial.println("Wait until the LED is off to press the button!");
 delay(1000);
 Serial.println("No points for you!");
 startScore = 0; // reset initial points
 }
 digitalWrite(LED, LOW); //LED off, game has begun

// My button goes HIGH when pressed. If your button is not working,
// try swapping the LOW and HIGH from the while and if loop arguments
 while (buttonState == LOW) { // while button NOT pressed
 buttonState = digitalRead(button); // read the button state
 if (buttonState == HIGH) { // when button pressed
 endScore = millis(); // read end time

// subtract start time from end to find the difference. This is your score.
 score = endScore - startScore;
 Serial.print("Your score is: ");
 Serial.println(score); //prints score
 delay(2000);

 } // close button pressed
 } // close button unpressed
 } // close photoresistor if statement

// reset random delay to a new random value
 randomTime = random(minTime, maxTime);
 delay(1000);
} // close void loop

Arduino Reaction
Time

Extensions

Add a highscore to your reaction game.

1) Declare a highScore variable in the intialization section at the start of the program.
Set a large highScore so we can easily beat it with our reaction time.

unsigned long highScore = 100000; //set a large highscore

2) After calculating and printing your score in the void loop, check if there is a new
highscore. The highscore is the lowest number of milliseconds, so we can check if
the score is less than the previous highscore. If yes, set the new highscore to our
current score. Print a victory message to the Serial.

3) I have included a for loop to flash the LED. This is just a flashy celebration loop, you
can replace this loop with any celebration code you like.

4) else { Print a message to let us know the highscore was not beaten.
5) Outside of the if loop, delay and print the current highscore.
6) That is all we need to add for our High score extension! Continue the program as

before, by closing the game loops and resetting the random delay.

 if (score < highScore) { //if new score is lower than previous highscore
 highScore = score; //set new lowest score
 Serial.println("New high score!");
 for (int i = 0; i < 9; i++) { // celebrate a highscore by
 digitalWrite(LED, HIGH); // flashing the LED
 delay(100);
 digitalWrite(LED, LOW);
 delay(100);
 }
 } else { //if not faster than highscore
 Serial.println("Gotta be faster than that!");
 }

 delay(2000); // wait before printing the highscore to the Serial monitor
 Serial.print("The current high score is: ");
 Serial.println(highScore); // print fastest reaction time

Arduino Reaction
Time

reactionGameHighScore.ino - Complete Code with High Score extension

/*
Cover the Photoresistor to start the game and turn on the LED.
The LED will stay on for a random amount of time.
Press the button once the LED has turned off to test your reaction time.
Read your score in the serial monitor, this is your reaction time in milliseconds!
*/

// declare the Pin constants for the button, LED and photoresistor pins
const int button = 4;
const int LED = 13;
const int lightPin = 0; // use an Analog pin for the photoresistor

//photoresistor variables
int firstLight; // first reading from photoresistor, used to calibrate
int currentLight; // current reading, check to compare with firstLight
int threshold = 50; // trigger the game once threshold is breached
//adjust the threshold appropriately to photoresistor readings
//if readings are low/unusual, try a different resistor on the photoresistor ground

//random delay variables
int randomTime;
int minTime = 2000; //minimum random delay (2 seconds)
int maxTime = 5000; //maximum random delay (5 seconds)

//Score variables - use unsigned long for large numbers of milliseconds
unsigned long startScore; //start time when LED turns off
unsigned long endScore; //end time when button is pressed

unsigned long score; //score = endScore - startScore
unsigned long highScore = 100000; //set a large highscore

int buttonState; // holds the current state of button

Arduino Reaction
Time

void setup() {
 Serial.begin (9600); //serial monitor begins

//read the inital light value. Keep the photoresistor uncovered
 firstLight = analogRead(lightPin);
 Serial.println(firstLight);

 pinMode(button, INPUT); //set button input
 pinMode(LED, OUTPUT); //set LED output

//randomize the delay time between min and max
 randomTime = random(minTime, maxTime);
 delay(2000); // give the serial connection time to start
}

void loop() {
 //read current light values and print to Serial
 currentLight = analogRead(lightPin);
 Serial.println(currentLight);

 // Turn on LED when we cover the photoresistor
 if (currentLight < firstLight - threshold) {

 digitalWrite(LED, HIGH);

// wait a random amount of time before LED turns off and game starts
 delay(randomTime);

 buttonState = digitalRead(button); // read the button state
 startScore = millis(); // read the starting time

// Check if button is pressed before the game has started
 if (buttonState == HIGH) {
 Serial.println("Wait until the LED is off to press the button!");
 delay(1000);
 Serial.println("No points for you!");
 startScore = 0; // reset initial points
 }
 digitalWrite(LED, LOW); //LED off, game has begun

Arduino Reaction
Time

// My button goes HIGH when pressed. If your button is not working,
// try swapping the LOW and HIGH from the while and if loop arguments
 while (buttonState == LOW) { // while button NOT pressed
 buttonState = digitalRead(button); // read the button state
 if (buttonState == HIGH) { // when button pressed
 endScore = millis(); // read end time

// subtract start time from end to find the difference. This is your score.
 score = endScore - startScore;
 Serial.print("Your score is: ");
 Serial.println(score); //prints score
 delay(2000);

 if (score < highScore) { //if new score is lower than previous highscore
 highScore = score; //set new lowest score
 Serial.println("New high score!");
 for (int i = 0; i < 9; i++) { // celebrate a highscore by
 digitalWrite(LED, HIGH); // flashing the LED
 delay(100);
 digitalWrite(LED, LOW);
 delay(100);
 }
 } else { //if not faster than highscore
 Serial.println("Gotta be faster than that!");
 }

 delay(2000); // wait before printing the highscore to the Serial monitor
 Serial.print("The current high score is: ");
 Serial.println(highScore); // print fastest reaction time
 delay(1000);
 }
 }
 }

// reset random delay to a new random value
 randomTime = random(minTime, maxTime);
 delay(1000);
}

Arduino Reaction
Time

Extensions

Also try,
Widening the random interval of delay to make the game less predictable

Have a fixed number of rounds and score points depending on your average
reaction time across all rounds.

Add a check to make sure you are beating your highscore, or else the game
will end. See how many rounds you can play while improving your reaction
time each round.

Have a question?

Reach us at
svcamp@engr.uvic.ca

Want to share your
project or results with us?

Email or tag us
@ScienceVenture

#SVatHome

