
Any questions?
Reach out

svcamp@engr.uvic.ca

Grade
7-9

Arduinos

Arduino Intro
Introduction to Arduino microcontrollers. Youth will learn how to connect
their computer to the Arduino web editor and cloud. Practice coding C++

and program a Morse code message using the onboard LED.

What is a Arduino?

Arduino is an open-source electronics platform based on easy-to-use
hardware and software. Arduino boards are able to read inputs - light on a
sensor, a finger on a button, or a Twitter message - and turn it into an output -
activating a motor, turning on an LED, publishing something online. You can tell
your board what to do by sending a set of instructions to the microcontroller on
the board. To do so you use the Arduino programming language (based on
Wiring), and the Arduino Software (IDE), based on Processing

Arduino coding environment: https://create.arduino.cc/editor/

Materials

● Arduino Uno Kit
○ USB Cable
○ White LED

● Computer with Arduino
Create

https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Reference/HomePage
http://wiring.org.co/
https://www.arduino.cc/en/Main/Software
https://processing.org/
https://create.arduino.cc/editor/

Arduino Intro
Why Arduino?

Inexpensive
● Arduino boards are relatively inexpensive compared to other

microcontroller platforms. The least expensive version of the Arduino
module can be assembled by hand and even the pre-assembled Arduino
modules cost less than $50

Cross-platform
● The Arduino Software (IDE) runs on Windows, Macintosh OSX, and Linux

operating systems. Most microcontroller systems are limited to Windows.

Simple, clear programming environment
● The Arduino Software (IDE) is easy-to-use for beginners, yet flexible

enough for advanced users to take advantage of as well. For teachers, it's
conveniently based on the Processing programming environment, so
students learning to program in that environment will be familiar with how
the Arduino IDE works.

Open source and extensible software
● The Arduino software is published as open source tools, available for

extension by experienced programmers. The language can be expanded
through C++ libraries, and people wanting to understand the technical
details can make the leap from Arduino to the AVR C programming
language on which it's based. Similarly, you can add AVR-C code directly
into your Arduino programs if you want to.

Open source and extensible hardware
● The plans of the Arduino boards are published under a Creative Commons

license, so experienced circuit designers can make their own version of the
module, extending it and improving it. Even relatively inexperienced users
can build the breadboard version of the module in order to understand
how it works and save money.

https://www.arduino.cc/en/Main/Standalone

Arduino Intro
Testing Arduino upload - simple test program

The Arduino Web Editor is the whole Arduino Desktop IDE online in a web
browser. Create and document your Arduino projects, create sketches, flash
sketches onto your Arduino board and share your work with your friends.

Code online with the Arduino web editor (account required)
https://create.arduino.cc/editor/

Press “HELP” on the left sidebar or top yellow message, then you will see this
pop-up.

Near the bottom of the help screen, click “INSTALL THE PLUGIN”
Run the installer once downloaded.
(ArduinoCreateAgent-1.1-windows-installer-firefox.exe on our machine)

Allow access to the program if asked by your firewall. You may need to go back
to the webpage where you downloaded the plugin and refresh to confirm the
app is installed and connected to the Arduino cloud.

When finished, you should see this symbol in your system tray:

https://create.arduino.cc/editor/

Arduino Intro
Instructions for setting up the Arduino web editor

Return to the Arduino Create website. You can do this by clicking the symbol in
the system tray and choosing “Arduino Create”, then “Arduino web editor”.

In the left side bar, click “Examples”, then find the “Blink” program under
“Basics”.

This is a simple program which turns the Arduino onboard LED on and off in
one second intervals.

The check mark under the program name verifies the program, and the arrow
uploads it to your Arduino Uno.

Some LEDs will quickly flash on your Arduino boards as the program uploads.
Then, the one second blinks should start.

Congratulations! You have successfully uploaded and run your first Arduino
program.

Morse Code with
Arduino

Code messages in morse code using the Arduino software.

Let's explore using the onboard LED to transmit morse code.

Basics of Morse code:
● We call the shortest duration of time used in Morse code a "unit".
● The unit is usually made as short as possible while still being

understandable to the receiver.
● A "dot" is a short blink, one unit long.
● A "dash" is a longer blink, three units long.
● Spaces between dots and

dashes in a letter are one unit long.
(in-letter space)

● Spaces between letters are
three units long.

● Spaces between words are
seven units long.

NOTE: if the onboard LED is not
 bright enough, put one side of an
LED into the GND and the other
into pin 13. The code doesn't need
to be modified for this to work.

Image from:
https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/International_Morse_Code.svg/2000px-International_
Morse_Code.svg.png

https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/International_Morse_Code.svg/2000px-International_Morse_Code.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/International_Morse_Code.svg/2000px-International_Morse_Code.svg.png

Morse Code with Arduino
MorseCodeInitial.ino
Copy and paste Arduino code (in blue) into the online editor or into a text file and saved as
a .ino file.

/*
Let's explore using the onboard LED to transmit morse code!

Basics of Morse code:
We call the shortest duration of time used in Morse code a "unit".
The unit is usually made as short as possible while still being understandable to
the receiver.

A "dot" is a short blink, one unit long.
A "dash" is a longer blink, three units long.

Spaces between dots and dashes in a letter are one unit long. (in-letter space)
Spaces between letters are three units long.
Spaces between words are seven units long.

NOTE: if the onboard LED is not bright enough, put one side of an LED into the
GND and the other into pin 13. The code doesn't need to be modified for this to

work.

*/

const int unit = 250; //Let's start off by using 250 milliseconds as the shortest unit.

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin LED_BUILTIN as an output.
 pinMode(LED_BUILTIN, OUTPUT);
}

Morse Code with Arduino

// the loop function runs over and over again forever
void loop() {
 //short blink (dot)
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(unit); // wait for 1 unit
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
 delay(unit); // wait for 1 unit

 //long blink (dash)
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(3*unit); // wait for 3 unit
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
 delay(unit); // wait for 1 unit

 //letter A (.-)
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(unit); // wait for 1 unit (dot)
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
 delay(unit); // wait for 1 unit (in-letter space)
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(3*unit); // wait for 3 unit (dash)
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
 delay(3*unit); // wait for 3 units (end of letter space)

 //space
 delay(4*unit); // Spaces between words require 7 units of space.
 // Each letter already has 3 units of space at the end.
 // So an additional 4 units of space signify the end
 // of a word.
}

Morse Code with Arduino
Morse Code Functions: MorseCodeInitial.ino
/*

Let's explore using the onboard LED to transmit morse code!

Basics of Morse code:
We call the shortest duration of time used in Morse code a "unit".
The unit is usually made as short as possible while still being understandable to
the receiver.

A "dot" is a short blink, one unit long.
A "dash" is a longer blink, three units long.

Spaces between dots and dashes in a letter are one unit long. (in-letter space)
Spaces between letters are three units long.
Spaces between words are seven units long.

NOTE: if the onboard LED is not bright enough, put one side of an LED into the
GND and the other into pin 13. The code doesn't need to be modified for this to
work.

*/

const int unit = 250; //Let's start off by using 250 milliseconds as the shortest unit.

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin LED_BUILTIN as an output.
 pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 letter_a();
 letter_b();
 letter_b();
 letter_a();
 end_of_word();
}

void letter_a() {
 digitalWrite(LED_BUILTIN, HIGH);
 delay(unit); // dot
 digitalWrite(LED_BUILTIN, LOW);
 delay(unit); // in-letter space
 digitalWrite(LED_BUILTIN, HIGH);
 delay(3*unit); // dash
 digitalWrite(LED_BUILTIN, LOW);
 delay(3*unit); // end of letter space
}

void letter_b() {
 digitalWrite(LED_BUILTIN, HIGH);
 delay(3*unit); // dash
 digitalWrite(LED_BUILTIN, LOW);
 delay(unit); // in-letter space
 digitalWrite(LED_BUILTIN, HIGH);
 delay(unit); // dot
 digitalWrite(LED_BUILTIN, LOW);
 delay(unit); // in-letter space
 digitalWrite(LED_BUILTIN, HIGH);
 delay(unit); // dot
 digitalWrite(LED_BUILTIN, LOW);
 delay(unit); // in-letter space
 digitalWrite(LED_BUILTIN, HIGH);
 delay(unit); // dot
 digitalWrite(LED_BUILTIN, LOW);
 delay(3*unit); // end of letter space
}

void end_of_word() {
 delay(4*unit); // adds 4 units of space to the end of the last letter
 // this signifies the end of the word
}

Morse Code with Arduino

void letter_a() {
 digitalWrite(LED_BUILTIN, HIGH);
 delay(unit); // dot
 digitalWrite(LED_BUILTIN, LOW);
 delay(unit); // in-letter space
 digitalWrite(LED_BUILTIN, HIGH);
 delay(3*unit); // dash
 digitalWrite(LED_BUILTIN, LOW);
 delay(3*unit); // end of letter space
}

void letter_b() {
 digitalWrite(LED_BUILTIN, HIGH);
 delay(3*unit); // dash
 digitalWrite(LED_BUILTIN, LOW);
 delay(unit); // in-letter space
 digitalWrite(LED_BUILTIN, HIGH);
 delay(unit); // dot
 digitalWrite(LED_BUILTIN, LOW);
 delay(unit); // in-letter space
 digitalWrite(LED_BUILTIN, HIGH);
 delay(unit); // dot
 digitalWrite(LED_BUILTIN, LOW);
 delay(unit); // in-letter space
 digitalWrite(LED_BUILTIN, HIGH);
 delay(unit); // dot
 digitalWrite(LED_BUILTIN, LOW);
 delay(3*unit); // end of letter space
}

void end_of_word() {
 delay(4*unit); // adds 4 units of space to the end of the last letter
 // this signifies the end of the word
}

Have a question?

Reach us at
svcamp@engr.uvic.ca

Want to share your
project or results with us?

Email or tag us
@ScienceVenture

#SVatHome

