
Any questions?
Reach out

svcamp@engr.uvic.ca

Grade
7-9

Arduinos

Arduino Fibonacci
Sequence

Practice using variables in C++ code. Wire an Arduino to a breadboard and
program a button to produce the values of the Fibonacci sequence. Learn
about using the console, debugging, and value ranges related to binary
maximums. Continue coding by extending the code into the tribonacci

sequence.

What is a Arduino?

Arduino is an open-source electronics platform based on easy-to-use
hardware and software. Arduino boards are able to read inputs - light on a
sensor, a finger on a button, or a Twitter message - and turn it into an output -
activating a motor, turning on an LED, publishing something online. You can tell
your board what to do by sending a set of instructions to the microcontroller on
the board. To do so you use the Arduino programming language (based on
Wiring), and the Arduino Software (IDE), based on Processing

Arduino coding environment: https://create.arduino.cc/editor/

Materials

● Arduino Uno Kit
○ USB Cable
○ White LED
○ Breadboard
○ Button switch

● Computer with Arduino
Create

https://www.arduino.cc/en/Main/Products
https://www.arduino.cc/en/Reference/HomePage
http://wiring.org.co/
https://www.arduino.cc/en/Main/Software
https://processing.org/
https://create.arduino.cc/editor/

Arduino Fibonacci
Sequence

What is a breadboard?

An electronics breadboard is actually
referring to a solderless breadboard.
Solderless means that we don’t have
to make permanent attachments for

our circuit components, but rather we
can use the metal conductors within

the board to conduct electricity
between the rows and columns.
These are great units for making

temporary circuits and prototyping,
and they require absolutely no

soldering.

Once inserted that component will be electrically connected to anything else placed in that
row. This is because the metal rows are conductive and allow current to flow from any
point in that strip.

You’ll also notice that each horizontal row is separated by a ravine, or crevasse, in the
middle of the breadboard. This ravine isolates both sides of a given row from one another,
and they are not electrically connected.

These power rails are metal strips that are identical to the ones that run horizontally,
except they are, typically*, all connected. When building a circuit, you tend to need power
in lots of different places. The power rails give you lots of easy access to power wherever
you need it in your circuit. Usually they will be labeled with a ‘+’ and a ‘-’ and have a red
and blue or black stripe, to indicate the positive and negative side.

It is important to be aware that the power rails on either side are not connected, so if you
want the same power source on both sides, you will need to connect the two sides with
some jumper wires. Keep in mind that the markings are there just as a reference. There is
no rule that says you have to plug power into the '+' rail and ground into the '-'rail, though
it's good practice to keep everything in order.

- As long as all the electrical connections are being made, you can build your circuit
any way you’d like!

- You can simply pull power from the Arduino’s female headers. The Arduino has
multiple power and ground pins that you can connect to the power rails or other
rows on a breadboard.

- The Arduino usually gets its power from the USB port on a computer or an external
power supply such as a battery pack

https://learn.sparkfun.com/tutorials/how-to-use-a-breadboard/all#power
https://www.sparkfun.com/products/9835

Arduino Fibonacci
Sequence

So why do we call this electronic “circuit builder” a breadboard? Many years ago, when
electronics were big and bulky, people would grab their mom’s breadboard, a few nails or
thumbtacks, and start connecting wires onto the board to give themselves a platform on
which to build their circuits.

Example breadboard connection for Button switch LEDs:

Arduino Fibonacci
Sequence

The Fibonacci Sequence is a series of numbers, wherein the next number is found
by adding up the two numbers before it.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,
6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, …

We can write the rule:
The Rule is xn = xn−1 + xn−2

where:

● xn is term number "n"
● xn−1 is the previous term (n−1)
● xn−2 is the term before that (n−2)

Example: term 9 is calculated:

X9 = x9−1 + x9−2
= x8 + x7
= 21 + 13
= 34

And here is a surprise. When we take any
two successive (one after the other)

Fibonacci Numbers, their ratio is very close
to the Golden Ratio "φ" which is

approximately 1.618034...

In fact, the bigger the pair of Fibonacci
Numbers, the closer the approximation.

You can also calculate a Fibonacci Number
by multiplying the previous Fibonacci
Number by the Golden Ratio and then
rounding (works for numbers above 1)

https://www.mathsisfun.com/numbers/fibonacci-sequence.html
https://www.mathsisfun.com/numbers/golden-ratio.html

Arduino Fibonacci
Sequence

Fibonacci.ino

/*

A sequence is a list of numbers.
For some sequences, you pick some of the first few numbers. Then, the next
number in the sequence is a result of the older ones.

For the Fibonacci sequence, we start with the first two numbers being 1.
To get the next number in this sequence, you add together the last two numbers
that are in the list.

 Circuit:
 button to Arduino Pin4

*/

// VARIABLES
const int button = 4; // button Pin
int buttonState; // will hold the current state of button
int lastButtonState = HIGH; // will store the previous state of button

int a = 1; // variables used to calculate the Fib. numbers
int b = 1; // the values for a and b are the "seed" for the sequence
int c; // c is used to get the next number in the sequence.

void setup() {
 pinMode(button,INPUT); // set button as input
 Serial.begin(9600); // begin serial communication
 delay(2000); // 2s delay, so we can start the Serial Monitor
}

Arduino Fibonacci
Sequence

Fibonacci.ino

void loop() {
 buttonState = digitalRead(button); // read the button state

 // if button is just pressed
 // this logic tries to make sure that each button
 // press only causes one new line of Fib numbers.
 if(buttonState == LOW && buttonState != lastButtonState){

c = a + b; // calculate next Fib. number
printNumbers(a,b,c); // send the last three values to the print function
a = b; // The last number becomes the second-to-last
b = c; // The new number becomes the last number in the list

 }
 lastButtonState = buttonState; // store last button state
}

void printNumbers(int d, int e, int f){
 // this funcion is used to print the Fib. numbers into a "table" on the Serial Monitor

 Serial.print(d); // print F[n-2]
 Serial.print("\t");
 Serial.print("+");
 Serial.print("\t");
 Serial.print(e); // print F[n-1]
 Serial.print("\t");
 Serial.print("=");
 Serial.print("\t");
 Serial.println(f); // print F[n], the new Fib. number
 // notice how the println function adds a newline to the end (compared to print, which
doesn't)
}

Arduino Fibonacci
Sequence

As you can see in our output, when we get to the:
17711 + 28657 =

instead of getting 46368 we get -19168

Why is this happening?

Integers are 16 bit on the Arduino with on bit reserved for the sign in the
signed version, so 32767 is the highest number such a variable is able to hold,
afterwards it overflows and goes negative. If you want to play with higher
numbers, use the long version or better the explicit types: int32_t.

The 32 bit unsigned number is being truncated to a 16 bit signed number type.

Arduino Fibonacci
Sequence

Tribonacci.ino

/*

A sequence is a list of numbers.
For some sequences, you pick some of the first few numbers. Then, the next
number in the sequence is a result of the older ones.

For the Tribonacci sequence, we start with the first two numbers being 0,
and the third number being 1.
To get the next number in this sequence, you add together the last three numbers
that are in the list.

 Circuit:
 button to Arduino Pin4

*/

// VARIABLES
const int button = 4; // button Pin
int buttonState; // will hold the current state of button
int lastButtonState = HIGH; // will store the previous state of button

int a = 0; // variables used to calculate the Trib. numbers
int b = 0; // the values for a, b and c are the "seed" for the sequence
int c = 1; // d is used to get the next number in the sequence.
int d;

void setup() {
 pinMode(button,INPUT); // set button as input
 Serial.begin(9600); // begin serial communication
 delay(2000); // 2s delay, so we can start the Serial Monitor
}

void loop() {
 buttonState = digitalRead(button); // read the button state

 // if button is just pressed
 // this logic tries to make sure that each button
 // press only causes one new line of Trib numbers.
 if(buttonState == LOW && buttonState != lastButtonState){

d = a + b + c; // calculate next Trib. number
printNumbers(a,b,c,d); // send the last four values to the print function
a = b;
b = c;
c = d; // these three assignment lines shuffle each of the

 // variables forward one space in the sequence
 }
 lastButtonState = buttonState; // store last button state
}

void printNumbers(int e, int f, int g, int h){
 // this funcion is used to print the Trib. numbers into a "table" on the Serial Monitor

 Serial.print(e); // print the third to last Trib. number
 Serial.print("\t");
 Serial.print("+");
 Serial.print("\t");
 Serial.print(f); // print the second to last Trib. number
 Serial.print("\t");
 Serial.print("+");
 Serial.print("\t");
 Serial.print(g); // print the last Trib. number
 Serial.print("\t");
 Serial.print("=");
 Serial.print("\t");
 Serial.println(h); // print the new Trib. number
 // notice how the println function adds a newline to the end (compared to print, which
doesn't)
}

Arduino Fibonacci
Sequence

void loop() {
 buttonState = digitalRead(button); // read the button state

 // if button is just pressed
 // this logic tries to make sure that each button
 // press only causes one new line of Trib numbers.
 if(buttonState == LOW && buttonState != lastButtonState){

d = a + b + c; // calculate next Trib. number
printNumbers(a,b,c,d); // send the last four values to the print function
a = b;
b = c;
c = d; // these three assignment lines shuffle each of the

 // variables forward one space in the sequence
 }
 lastButtonState = buttonState; // store last button state
}

void printNumbers(int e, int f, int g, int h){
 // this funcion is used to print the Trib. numbers into a "table" on the Serial Monitor

 Serial.print(e); // print the third to last Trib. number
 Serial.print("\t");
 Serial.print("+");
 Serial.print("\t");
 Serial.print(f); // print the second to last Trib. number
 Serial.print("\t");
 Serial.print("+");
 Serial.print("\t");
 Serial.print(g); // print the last Trib. number
 Serial.print("\t");
 Serial.print("=");
 Serial.print("\t");
 Serial.println(h); // print the new Trib. number
 // notice how the println function adds a newline to the end (compared to print, which
doesn't)
}

Have a question?

Reach us at
svcamp@engr.uvic.ca

Want to share your
project or results with us?

Email or tag us
@ScienceVenture

#SVatHome

