
Micro:Bits

Any questions?
Reach out

svcamp@engr.uvic.ca

Grade 5/6

Micro:Bits Binary
Learn the binary number system, boolean logic, and how computers process
bits and bytes. Understand what bits and bytes are and how they relate to

computers and the way information is processed and stored. Learn to count
in Base-2 (binary) and translate numbers from Base-10 (decimal) to binary

and decimal. Apply the above knowledge and skills to create a unique
program that uses binary counting as an integral part of the program.

Materials

● Micro:bit kit
○ 1 Micro:bit
○ 1 Battery pack
○ 1 Micro USB cable

● Optional: 1 Dongle adapter if using
Mac

Key Words

A Binary Number is a number expressed in base-2, a number system that only uses the
symbols “0” and “1”.

A Bit is a binary digit with two possible values, zero or one

A Byte is a sequence of 8 bits and has 256 possible values from 00000000 through
11111111

A kilobyte (kB) is 1,024 bytes or 2^10 bytes

A Megabyte (MB) is 1,048, 576 bytes or 2^20 bytes

A Gigabyte (GB) is 1,073,741,824 bytes or 2^30 bytes

A Terabyte (TB) is 1,099,511,627,776 bytes or 2^40 bytes

Micro:Bits Binary
Have any of you bought anything in the last 24 hours?
Did any of you use cash? What bills or coins did you use?
What are the core denominations of money in Canada?

The number system we use for our money in Canada is in base-10, but what
does that mean?

● 1 penny
● 1 dime = 10 pennies
● 1 loonie = 10 dimes (or 100 pennies)
● 1 ten dollar bill = 10 loonies
● 1 hundred dollar bill = 10 ten dollar bills

Our money system is based on our number system, the decimal system. The
deci- prefix means ‘one tenth’. Each place value in the decimal is one tenth of
the place value to its left. Each digit has 10 possibilities from 0-9, we call this
base-10.

But what about number systems that do not have 10 possibilities per digit?

Activity 1

Students will explore the concept of binary numbers by experimenting with a
very odd vending machine that only accepts Base-2 coins and doesn’t give
change! In the process, students will become familiar with an alternate
numbering system, in this case binary (Base-2). Students will learn how
binary relates to decimal, and will be able to convert between the two
systems.

Micro:Bits Binary
Activity 1 Continued

Our vending machine (see next page) lists its prices in as decimal values
(base-10). Choose one item from the vending machine and decide which
binary coins you must use to match the decimal price tag

Remember
● Exact change only
● You can only use one of each coin
● The four binary coins are worth 1, 2, 4 and 8

Example:

I want to purchase the camera for $10. How can I use my binary coins to
match that price?

● In this example, the ‘8’ coin and the ‘2’ coin will add to 10

Now I’m going to mark which coins I’ve used in binary.

I have marked each coin I used with a ‘1’ and each coin I did not use with a ‘0’

From this table I created, I can now see how to represent the number ten in
binary, 1010.

Your turn! Try and represent other base-10 numbers in binary.

8 value binary coin 4 value binary coin 2 value binary coin 1 value Binary Coin

1 0 1 0

Micro:Bits Binary

Micro:Bits Binary
Activity 2

Doubler / Binary Calculator

Create a program which doubles values, just like the order of binary numbers.
What do you notice about every number we can generate with this program?
All numbers are even and represent a 1 bit with 0s following. Extension: Press
B to add numbers to our sum and A+B to show sum and reset the binary
counter. Try to only use each bit once and see if you can generate any number
you can think of with a unique combination of binary values.

Step-by-Step
● We can start our program by displaying a unique image ‘on start’. This is

a sign to tell us that our program has started fresh.
● We then want to create a variable so we have a value to perform our

calculations. You can name your variable whatever you like, in this case I
have kept it listed as ‘Variable’.

● Set the variable to 1 to begin, as this is the lowest binary digit containing
1.

● Add a pause so our initial image can be displayed briefly, and then add a
‘Show number’ block and connect a Variable value block to display our
starting variable.

● Now our program has begun! The variable of 1 will display until we
introduce our multiplication function.

Micro:Bits Binary
Activity 2 Continued

Multiplication function

● Now we want to implement a way to multiply our binary digit.
To begin we use an input block to start our multiplication
function. In this case I have used ‘On button A pressed’.

● To multiply, we can set our variable to a new value. Take the ‘set
variable’ block from the variables category.

● Look in the Math category to find a mathematical operation value
block to attach to ‘set variable’. Set the middle dropdown to ‘x’
multiplication. Type 2 in one half of the operation, and add the
variable value block to the other space in the operation.

● Add a ‘show number’ block to display our new variable value.
● Add a pause as a good coding convention, to limit accidental

presses of the A button in quick succession.

Now when we press A, our binary digit is multiplied by 2 and shifted
to the left by 1 binary digit. Our decimal value is then displayed on
the Micro:bit.

Micro:Bits Binary
Activity 2 Continued

Sum different binary digit values to create a binary calculator!

● Use another input block to activate our summing function. In this
case I have used ‘on Button B pressed’.

● Now we create a new variable to sum our values. I have named
this variable ‘Sum’. Attach a ‘set variable’ block to our input
frame. Be sure that this block is changing our Sum value by
selecting ‘Sum’ in the leftmost dropdown menu.

● Just like in our previous function, we are now going to use a
math block to add values. Change the middle operator to a +.
Use variable value blocks to place ‘Sum’ in one half of the
operation and ‘Variable’ in the other.

● We can place a unique icon and short delay after our summing
operation to show that we have added to our global sum.

● Finish the function by displaying our current variable just as we
have done in the previous functions.

Now when we press B, our Sum is increased by the current value of
our variable and we return to the default program state to continue
multiplying or adding to our sum.

Micro:Bits Binary
Activity 2 Continued

Reset / Finish calculation:

● Now we will implement one more input function to show our
final sum and reset the program as if we had just started.

● To continue with the button inputs, I have chosen A+B to reset
our program. You can use pin inputs if campers wish to try inputs
other than buttons.

● Start the reset function by clearing the screen and stopping
animations. You can search for these blocks in the search
window on top of the block categories. Blocks are titled ‘Clear
screen’ and ‘Stop animation’.

● Again we will use an icon to indicate we have begun to reset. I
have chosen the same image as my ‘on start’ to represent a fresh
program restart. Add a pause to see the icon displayed for as
long as you like.

● Use a ‘show string’ block to add some text before you reveal
your Sum. I wrote “Sum = ” to introduce our sum.

● Then show number to display our Sum variable. Use a longer
delay to allow your number to show for a while, as the number
may become quite large if you have added many binary digits
into the sum.

● Now we need 2 ‘set variable’ blocks to reset our variables to their
default state. Set “Variable” to 1 and “Sum” to 0.

● Finally, use the ‘show number’ block one more time to display
our starting variable value of 1.

● Now A+B will show our Sum, reset our variables, and start our
program over

Micro:Bits Binary
Activity 2 Continued

From previous page’s steps

Complete Program

Micro:Bits Binary
Additional Activity

Binary to decimal transmogrifier

https://makecode.microbit.org/courses/csintro/binary/activity

The following activity will walk you through the steps to create a binary
transmogrifier with the micro:bit. The user will be able to use the buttons to
enter binary 0s and 1s and will be able to press A+B at any time to display the
decimal equivalent of the number that has been entered.

Additional Information

Most everyone who uses a computer has heard the terms, kilobyte (kB),
Megabyte (MB), Gigabyte (GB) and even Terabyte (TB), usually when referring
to the size of computer files and hard drives as well as download speeds.
Bandwidth or connection rates are measured in bits/second. But what is a bit
and what is a byte and what do they have to do with computers?

Picture a basic room light. The light is either on or it is off. You control the
current state of the light by flipping a switch that has only two settings, down
(light off) and up (light on). The earliest computers used a series of mechanical
switches to control the flow of electricity through their circuits, turning each
one on or off. The on/off states of the circuits was used to represent and even
store information. The smallest unit of information, representing the state of
one switch, is known as a bit.

https://makecode.microbit.org/courses/csintro/binary/activity

Micro:Bits Binary
Additional Information

A bit is a binary digit and has only two possible values, zero or one. The value
of the bit represents the current state of a single switch. If the switch is off,
then the bit has the value zero. If the switch is on, then the bit has the value
one.

A bit can only represent two different values, zero or one. To represent larger
pieces of information, bits are strung together in sequences of 8 called bytes.

A byte is a sequence of binary digits made up of 8 bits.

A byte can represent any value from 00000000 through 11111111, for a total
of 256 different possible values. Each digit in a byte can be thought of as
representing an individual switch that is either off (zero) or on (one).

Modern computers rely on transistors, which pack millions of tiny switches
into a chip smaller than your thumb, but information is still represented in
essentially the same way: as a series of ones and zeros. By using binary,
computers can represent information simply and efficiently using a system
that is very effectively modeled in digital circuitry.

