
Any questions?
Reach out

svcamp@engr.uvic.ca

Grade
7-9

Micro:Bits

Micro:Bits
Passwords

First, make a password generation program with Micro:bit Block Coding.
Then, make a version in microPython as well.

What is a Micro:Bit?

A Micro:bit is a miniature computer with a 5x5 LED display grid. We can use
the MakeCode editor to code a program to execute on our Micro:bit. A
program is simply a set of instructions for our Micro:bit to complete.

Materials

● Micro:bit kit
○ 1 Micro:bit
○ 1 Battery pack
○ 1 Micro USB cable

● Optional: 1 Dongle adapter if using Mac

Micro:Bits
Passwords

Procedure

1) Let’s make a password generator. First, we will choose which characters we want to
be in our password. Then we can add characters from that list to our password by
pressing the A button. Then, we can press the B button to display the password we
have generated. We’ll add a feature where you can shake the micro:bit to erase the
password and start again.

2) Let’s start with the character options. Let’s go to the array tab and create a list of
characters called “char options” (character is frequently abbreviated as char in
computer science). For the first part of the program, let’s just add 1,2,3,a,b,c, so that
there are 6 options total. Notice how big this block gets once we have six things in
the list!

3) We will keep track of our password by adding characters to a new array one at a
time. Duplicate the red block we just created and add it below. Click on the arrow
next to char_options and create a new variable, called “password”. Then, keep
clicking the negative sign at the bottom of the array until it says “empty array”.

Micro:Bits
Passwords

1)
2)
3)

4) Drag out an “on button A pressed” block, then go to the Arrays tab and find this

block (under modify heading) . Also in the Arrays tab,

find this block From the Math tab, bring out “pick random 0
to 10”. We want to get a random value from the character options, and add it to the
end of our password. Can you see how to fit these three blocks together to do that?
The final configuration looks like this:

5) Notice that there are six characters in our char_options. The list counts the
characters starting with 0, so they are listed off as 0, 1, 2, 3, 4, 5. That’s why we pick
a number from 0 to 5, instead of from 1 to 6.

6) Now, let’s figure out how to display the password. Bring out an “on button B

pressed” frame, then go to the Loops tab and find this block .
This loop is very useful anytime you need to do something with each element of a
list. In this case, we are going to display each value in our password list. So, click the
arrow next to ‘list’, and switch it to ‘password’.

7) From the Basic tab, pull out a show string block for inside the loop. Then, click the
rounded ‘value’ block and drag it into the show string block. Each time through the
loops, the ‘value’ variable contains the next character of the password. The final
result looks like this:

Micro:Bits
Passwords1)

2)
3)
4)
5)
6)
7)

8) Now, bring out an “on shake” frame from the Inputs tab. From the “on start” frame,
duplicate the “set password to empty array” block, and put this into the on shake
frame. Now, everytime you shake the micro:bit, the password is reset. Let’s also pull
out a “clear screen” block from the Basic tab to put in the same frame, so that we can
tell we have a fresh start.

9) Altogether, our final block coding version looks like this:

Micro:Bits
Passwords1)

2)
3)
4)
5)
6)
7)
8)
9)

10) Let’s switch to Python now! We can try to learn how Python works with the Micro:bit
by looking at how it translates block code into Python. Then, we can add more to our
password generation program.

11) It can take some time to understand code that you did not write, especially if Python
is brand new to you! This is my first time using the Python language with Micro:bits,
so I went through the program and added comments (green lines starting with, #, an
octothorpe).

Micro:Bits
Passwords

Micro:Bits
Passwords

1)
2)
3)
4)
5)
6)
7)
8)
9)

10)
11)

12) That’s a lot of new information to take in. Let’s make some small changes by adding
more characters to our char_options. Each value in the list needs to be separated by
a comma. The values are strings, and we tell the program that they are strings by
putting them in double quotes. I added some capital letters and some symbols to
make the password harder to guess.

13) If you test your program now, you will realize that only the first six options are being
chosen. Why don’t our new characters ever show up? The problem is inside the
randint command:

14) It only chooses integers between 0 and 5. We want it to choose between all of the
possible indices for our char_options list. From our discussion before, you might have
noticed that we need to choose an integer between 0 and one less than the number
of items in our list. Go to the Array tab and click on ‘len’ to see this:

15) It is showing you an example of how to find the number of values in an array called
‘list’. You can even click and drag this block into your code, then change the text as
needed. We need to replace the 5 in the randint command to be len(char_options)-1.
Notice that suggestions show up when you start typing -- press tab to auto
complete to the first option.

16) Now, we can add as many characters as we like to our list, without having to change
any other code.

Micro:Bits
Passwords

Take Home

1) Make two lists, char_options1 and char_options2. When you press A, append to your
password from char_options1, and when you press A+B, append from
char_options2.

2) First, let’s split char_options into two lists, char_options1 and char_options2. Notice
there are two parts to initializing char_options: the type declaration in one line, then
the actual initialization in the second line. The type declaration will be the same
(except the name changed), but the initialization for char_options2 will contain a
different set of symbols.

3) After splitting char_options up, the two lines above should become four lines, looking
something like below. Keep in mind that you can have the two lists contain whatever
symbols you like, as long as they are valid symbols for your password! I had numbers
and lowercase letters in the first list, then capital letters and other symbols in the
second list.

4) We will also have to go up to our function definition for “on_button_pressed_a” to
change each instance of “char_options” to “char_options1”. Notice there are two
places you need to make that change:

Micro:Bits
Passwords

Take Home

1)
2)
3)
4)

5) Finally, we need to add a function definition for “on_button_pressed_ab”, so that it is
possible to add characters from list 2 to our password. This will be the same as the
“on button pressed a” definition, except there will be two places where you change
‘char_options1” to “char_options2”, two places where you need to change “a” to “ab”,
and one place where you need to change “A” to “AB”. Can you find them all?

6) There’s one last issue that you may have noticed at this point. If your password
contains the same symbol twice in a row, you can only tell because the symbol is
displayed for longer. Let’s make that clearer by adding a space before each character
is displayed. That way, the scrolling screen tells us that we are looking at the next
letter in the password. To do this, replace the empty quotes, (“”), in the display string
command with quotes containing a single space (“ “).

Micro:Bits
Passwords

Final Program

1)

What changes would you make to continue to improve this program?

Have a question?

Reach us at
svcamp@engr.uvic.ca

Want to share your
project or results with us?

Email or tag us
@ScienceVenture

#SVatHome

