
Any questions?
Reach out

svcamp@engr.uvic.ca

Grade
7-9

Micro:Bits

Micro:Bits Python
Snake Game

A snake slithers from one corner of the Micro:bit screen to the other. Can
you remember it's path and follow it?

What is a Micro:Bit?

A Micro:bit is a miniature computer with a 5x5 LED display grid. We can use
the MakeCode editor to code a program to execute on our Micro:bit. A
program is simply a set of instructions for our Micro:bit to complete.

Materials

● Micro:bit kit
○ 1 Micro:bit
○ 1 Battery pack
○ 1 Micro USB cable

● Optional: 1 Dongle adapter if using Mac

Micro:Bits Python
Snake Game

Procedure

1) Open make code editor and switch it to Python.

2) You will notice there is some code there already! Anything code we type under the
“def on_forever():” statement will act the same as if it was in the “forever” frame in
the block coding version. In block coding, you could see how the code fit inside of
each other with the blocks. In Python, you use whitespace to see this. Notice how
“pass” is indented below the on_forever() definition? That is four spaces in. When we
are ready to add to the forever loop, we will replace pass with our first line of code.

3) For our snake game, we want the program to randomly generate a path of LEDS
from the top left [0,0] to the bottom right [4,4], then to display that path. After the
path disappears, we will have to use the A and B buttons to try to trace the same
path. Before we code a randomly generated path, let’s “hardcode” in an example
path, then write a function which prints the path to the screen.

4) Put your cursor in front of the first line and press ‘enter’ to give yourself some space
at the top of the program. I named our list egPath, and filled the list with smaller
lists!

5) In Python, lists are a very useful structure, and you will often even see lists of lists
like this. The outermost brackets are the main list, and each of the LED coordinates is
a smaller list (with two elements, the position of the x coordinate, and then the
position of the y coordinate).

6) Now, let’s write a function that prints this path to the LEDs! Like we have seen a few
times now, function declarations always start with the ‘def’ keyword, followed by the
function name, parentheses, and a colon. Make sure you have 4 spaces at the start of
the next line. We want to light a specific LED, so start to type led and then you will
see the autocomplete options. We want to use led.plot, so press tab to
autocomplete.

Micro:Bits Python
Snake Game1)

2)
3)
4)
5)
6)

7) Let’s run the function like this to see what happens. Below the function, but without
any indentation, type “print_path()”. Then, run the program (we can use the virtual
Micro:bit for this still). The top left pixel of the Micro:bit should light up.

8) Now, let’s add to our function so that it will light up all of the pixels in our example
path. We need to add a for loop to do this. Click in front of our led.plot command and
press enter to add a line above it. For this code, we will write “for step in egPath:”
a) The basic for loop structure goes “for value in list:” where list is the list we

want to iterate through, and value becomes the variable name keeping track of
which item in the list we are currently using. The for loop always starts with
value = list[0], then list[1], list[2], and so on until list runs out of elements.

b) So, in this case, we are using “step” to keep track of the individual elements of
our list (named egPath). Each “step” is a list of form [x,y], telling us the
coordinates of the pixel. To access the x coordinate, we write step[0], and for
the y coordinate, step[1].

9) We will write x = step[0] and y = step[1] inside of the loop. Each time through the
loop, the x and y coordinates of that step will be saved in these two variables. Then,
we can call led.plot(x,y) to plot those coordinates.

10) Also add a pause of half of a second so that we can see the path step by step.

11) This works now, but we are still missing something crucial -- comments! Use the #
and write a line describing what our new function does. It also helps to make a few
comments about any parts you found difficult so that you remember later.

12) Let’s randomly generate a path now! Let’s define a new function, generate_path. This
time, our function will create something new, and pass it along to the program
afterwards.

Micro:Bits Python
Snake Game1)

2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)

13) Line 13 initializes the list as empty. Line 14 appends the coordinates to the top left
pixel to the list. Then, “return path” ends the function by passing the new path to
wherever it was called. This will be the basic structure of our function: make a list,
put some things in it, then hand it off to the next part of the program. We just need
to add some more steps to the path now! Let’s use a different kind of loop this time.

14) We use “stepRight” as a boolean variable, 0 means false and 1 means true. Our next
step in the path will either be one step to the right or one step down, depending on
what random number was chosen. There’s still a small issue in this code, but we will
come back to fix it soon.

Micro:Bits Python
Snake Game1)

2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)

15) Let’s try to generate a path and then display it with our print function. There’s a small
issue here: we wrote the print_path function to only print egPath! Let’s change line 5
so that it displays a variable named path instead. We will call generate_path, then
save the result as path before printing it.

Micro:Bits Python
Snake Game1)

2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)

16) Keep restarting the program to see which paths get generated. Does the snake
always get to the bottom right corner? Why not?
a) The loop always adds 8 steps to the path.
b) Sometimes the loop steps to the right too many times and goes off the right

end of the screen. Sometimes it goes off the bottom end of the screen. The
biggest x or y coordinate is 4, so any coordinates with a 5 or larger go off the
screen.

17) Let’s add a little more code to our generate path function to make sure we always
end with the ninth coordinate as [4,4]. Each time through the loop, before we decide
to step right or to step down, let’s check the size of the x and y coordinates. If one of
the coordinates is 4, we will decide the direction of the next step instead of letting it
be randomly chosen. Add a few lines of blank space to the middle of your generate
path function.

Micro:Bits Python
Snake Game1)

2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)

18) If x is already 4, we will set stepRight to be 0 (which means do not step right again).
If y is already 4, we will set stepRight to be 1 (which means to step right, since we
have no room to step down). If neither of those things are true, we can safely pick a
direction at random.

Micro:Bits Python
Snake Game

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)

19) Now the path should make it to the bottom right LED each time. To finish the game,
we need to add the player’s response. We will start with x coordinate 0 and y
coordinate 0, and wait for the player’s response. If the player presses A, we will
increase the y coordinate by 1 (moving down). If the player presses B, we will
increase the x coordinate by 1 (moving right). When each step is added, we will
check if the player’s new step matches with the same step in the snake’s path. If the
step does not match, it will be game over! If the player can get all the way to [4,4] by
following the snake’s path, they win the game.

20) Start by clearing the snake’s path from the LED screen and initializing the player’s
coordinates. We can find the code to clear the screen in the Basic tab.
a) Since we are adding more code here, this is a great time to add some

comments to the existing code as well.
b) Create variables ‘current_x’ and ‘current_y’ to keep track of the current x and y

coordinates (both 0 for now!). Then, plot these coordinates to the LED screen.
c) Now we will make a while loop. We want to keep looping while it is NOT the

case that ‘current_x’ is 4 AND ‘current_y’ is 4. So we exit the loop when
‘current_x’ is 4 AND ‘current_y’ is 4.

d) Inside the loop, we will check if either button has been pressed. We use an if
statement, and we can find the “button is pressed” condition by looking in the
Input tab. You will have to change one of them to say ‘Button.B” instead of
“Button.A”. We will fill out the inside of these if statements in a moment, but
for now leave a comment saying what we will do if the condition is true.

Micro:Bits Python
Snake Game

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)

21) If we want to move down, we need to increase current_y by 1. Then, we need to
compare our current coordinates to the coordinates of the same step in the snake’s
path. In order to do this, we actually need to add one more variable to keep track of
which step number we are on. Let’s call this variable “stepNum”, and initialize it to 0
before our while loop. Each time we increment the x or the y value, we will increment
“stepNum” also.

22) Now we can add our check to see if we are following the snake path or not. If we do,
let’s display the current step on the LED display. If not, we will display a game over
screen.

Micro:Bits Python
Snake Game

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)

23) It seems like our game is finished, but there is one more tweak to make! As is, the
game over screen displays regardless of which button is pressed. That is because
the code runs so fast that it registers multiple button presses even if you only press
the button once. To fix this, we need to introduce a short pause after each button
press. How long do you normally have the button pressed for? Let’s try a delay of
half a second, or 500 milliseconds, after each button press.

24) Now the game should run fine! Here’s a screenshot of the entire game code: There
are a lot of lines!

Micro:Bits Python
Snake Game

Micro:Bits Python
Snake Game

Have a question?

Reach us at
svcamp@engr.uvic.ca

Want to share your
project or results with us?

Email or tag us
@ScienceVenture

#SVatHome

